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Abstract 

The traditional model of cerebrospinal fluid (CSF) hydrodynamics is being 
increasingly challenged in view of recent scientific evidences. The established model 
presumes that CSF is primarily produced in the choroid plexuses (CP), then flows 
from the ventricles to the subarachnoid spaces, and is mainly reabsorbed into 
arachnoid villi (AV). This model is seemingly based on faulty research and 
misinterpretations. This literature review presents numerous evidence for a new 
hypothesis of CSF physiology, namely, CSF is produced and reabsorbed throughout 
the entire CSF-Interstitial fluid (IF) functional unit. IF and CSF are mainly formed and 
reabsorbed across the walls of CNS blood capillaries. CP, AV and lymphatics 
become minor sites for CSF hydrodynamics. The lymphatics may play a more 
significant role in CSF absorption when CSF-IF pressure increases. The 
consequences of this complete reformulation of CSF hydrodynamics may influence 
applications in research, publications, including osteopathic manual treatments. 
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CP: choroid plexus(ses) 

CSF: cerebrospinal fluid 

IF: interstitial fluid 
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• Introduction 

This article describes some of the new concepts and hypotheses concerning 
cerebrospinal fluid (CSF) hydrodynamics. In the traditional hypothesis it is commonly 
accepted that the CSF is mainly secreted from the choroid plexuses (CP) of the brain 
ventricles, then flows inside the ventricular cavities to reach the subarachnoid 
spaces, and then is mainly reabsorbed into venous sinuses across arachnoid villi. A 
large number of publications from experiments showed there is little convincing “in 
vivo” evidence to support the classical model. 1-23 This traditional model is being 
increasingly challenged, in view of recent scientific evidence. 

 

• Cerebrospinal fluid secretion: traditional and non-traditional hypotheses 
 
- Choroid plexuses and ventricular ependyma 

 

The classical model 

Research on cerebrospinal fluid started almost a century ago. 24-26 The classical 
model describes a continuous production of CSF from the plasma of the CP 
vasculature. This view was established by the experiments of Dandy in 1919 who 
performed unilateral choroid plexectomy in a dog and completed bilateral obstruction 
of the foramen of Monro. 27-29 The blockage produced a dilation in the ventricle still 
containing a choroid plexus but not in the one without. Therefore he concluded that 
the CSF is formed from the choroid plexuses. Further, the dilatation of the ventricle 
implied that CSF absorption does not occur inside the brain ventricle and the 
“circulation of CSF” is obstructed if the two foramina of Monro are blocked. These 
interpretations formed the basis of the traditional hypothesis. It is important to note 
that this experiment was performed on a single dog and it was never reproduced. 30-

32 As a consequence of Dandy’s experiment, surgical choroid plexectomy for 
hydrocephalus was promoted. 27-29 



Choroid plexuses (CP) are villous structures covered by a single layer of epithelial 
cells. Scientists worldwide agree with the traditional hypothesis that CSF is produced 
mainly by the choroid plexuses. There are 2 steps in this process: 

 

Figure 1: The Traditional Model of Cerebrospinal Fluid (CSF) Hydrodynamics. 

 

A- First, a passive filtration of plasma occurs across fenestrated choroidal capillary 
endothelium to the basolateral surface of the CP epithelial cells. This phase is 
facilitated by hydrostatic pressure. 33 

B- Then, an active secretion occurs across a single layer of CP epithelium that is 
released from the apical side into the ventricular cavity. 34, 35 In this model, 
hydrostatic or oncotic pressures should not significantly influence active CSF 
formation. Some authors also describe the ventricular ependyma itself as another 
source of CSF production. 34, 36-39 

 

Data conflicting with the classical model 

Dandy’s choroid plexectomy for hydrocephalus has been abandoned since results 
are unsatisfactory. Orešković and Klarica reexamined the CSF formation rate, 
including the ventriculocisternal perfusion established by Heisey et al., a method still 
regarded as the most precise one. 11, 40 They showed that the classical 
ventriculocisternal perfusion method is neither precise nor dependable for measuring 
CSF formation rate. 7 Contradictory to conventional knowledge Milhorat removed the 



choroid plexuses from both lateral ventricles in a human subject and in monkeys and 
found no significant changes in the volume of CSF secretion nor in CSF composition. 
32, 41-44 Even after a total choroid plexectomy the CSF is secreted at the rate of 
approximately 1 liter per day. 45  

Orešković, Klarica, et al. reproduced many experiments addressing CSF physiology 
taking great care not to replicate previous experimental errors. The results hold in 
question our traditional models of CSF. 

They inserted a cannula with stopcock, (modified from Flexner and Winters) for the 
occlusion and drainage in cats aqueduct of Sylvius 4, 46, 47 and observed a fluctuation 
of aqueduct of Sylvius CSF. 4, 14-16, 18 For 120-190 minutes following aqueductal 
occlusion they monitored the ventricular size and CSF pressure in cats’ ventricles 
and cisterna magnae. 

In this experiment an increased ventricular volume and pressure, and the presence of 
a clear transmantle pressure should be observed, according to the classical model. 
The transmantle pressure is the difference between the pressure inside the brain 
ventricles (i.e. lateral ventricles or aqueduct of Sylvius) and the pressure in the 
subarachnoid spaces (i.e. cisterna magna). 

 

Figure 2: The scheme of the experimental model of Orešković and Klarica to recover CSF 
from the aqueduct of Sylvius in cats, following aqueductal occlusion. Adapted from 
Orešković, D., Klarica M., 2010. The formation of cerebrospinal fluid: Nearly a hundred years 
of interpretations and misinterpretations. Brain Res. Rev. 64 (2), 241-262. (Fig. 7 page 11) 

 
 
However the CSF pressure in the lateral ventricles and cisterna magna of each cat 
did not differ during 120 min of this experiment. X-ray ventriculography before and 
two hours after aqueductal occlusion did not confirm ventricular dilatation. In other 



words they observed no increase in pressure or dilation of the ventricles with 
ventriculography, and no transmantle pressure ever developed. 4 These experiments 
suggested that the CP are not the main location of CSF production. 

 

- Capillary Endothelium 

Other experimentation found that the CP are responsible for 60 to 85 percent of the 
total production of CSF. 35, 48, 49 Some studies have shown that about 15 to 30 
percent of CSF is produced from an extrachoroidal origin. 34, 35, 38, 50 Hakim, et al. and 
Di Chiro suggested that CSF can be formed and reabsorbed everywhere within the 
CNS. 51-53 The weight of the CP in the lateral, third and fourth ventricles is only two to 
three grams. Crone and Raichle established that the surface of the brain capillaries is 
extremely large, 250 cm2/g of tissue, which is about 5000 times larger than the 
surface of the CP. 54, 55 Some experimental models concluded that the CNS capillary 
endothelium may be an important source of CSF production. 56-59 Research 
demonstrated that the elevation of intracranial hydrostatic pressure considerably 
lowers the production of CSF, and vice versa. 10, 13, 46, 60-65 Other experiments showed 
that the elevation of CSF osmolarity considerably increases the production of CSF, 
and vice versa. 8 In brain edema, clinicians observe that the injection into the blood 
stream of an hyperosmolar solution (i.e. mannitol) decreases bulk water flow from 
brain tissue. 6, 66 These experiments are all contrary to the classical hypothesis from 
which we expect CSF formation being dependant on active CSF secretion in the CP 
and passive absorption in the arachnoid villi. According to the experiments of Bulat, 
Klarica and Orešković, the interstitial fluid (IF), the fluid in the cerebral parenchyma, 
and CSF, the fluid in the subarachnoid spaces, constitute a functional unit. The 
volumes of these fluid compartments are mainly regulated by modifications in 
osmotic and hydrostatic pressure in the capillaries on one side and the IF-CSF unit 
on the other. They further suggest that the production and reabsorption of CSF 
mostly takes place within the CNS capillaries. 1, 4, 8, 11, 12  

The fact that the endothelium of CNS capillaries contain Na+-H+ antiporters (for 
transport of substances across cellular membrane) and the high Na+-K+-ATPase 
activity of this endothelium also suggest that brain microvessels play an essential 
part in CNS fluid volume regulation. 67 

 

• Cerebrospinal fluid transport 

The general classical agreement is that the CSF is secreted into the brain ventricles 
and flows unidirectionally through the ventricular axis (see figure 1). Transchoroidal 
secretion of water, ions and macromolecules drive CSF down the ventriculo-cisternal 
axis. 68 Traditionally, secreted CSF flows down the ventricular cavities to the 4th 
ventricle and then out through hindbrain foramina into the cisterna magna and other 
basal regions of the subarachnoid space. 

Orešković, Klarica, et al. used a cannula that permits the flow of CSF unless a 
stopcock is turned off to occlude the flow. This way an acute occlusion of the 
aqueduct of Sylvius in cats was performed. 4, 14-16, 18 They monitored CSF flow in the 
cats’ aqueduct of Sylvius, but did not retrieve any CSF via the cannula in the 



aqueduct of Sylvius in more than 3 hours! They observed CSF continually pulsating 
but no liquid was drained during these experiments! These data added to their 
suspicion of a faulty classical model and made them ask whether CSF really 
circulated. 14 The same phenomenon (no outflow of CSF) was noticed in control cats 
at physiological CSF pressure without aqueductal obstruction. 14 At the same time, 
when they injected artificial/mock CSF at different rates during a 20-min. period into 
the lateral ventricles, they found that at 13 µl/min infusion, an important transmantle 
pressure was recorded. Transmantle pressure is the pressure recorded between 
ventricle and SAS. However, after the infusion of artificial CSF was ended, CSF 
pressures returned toward physiological values and transmantle pressure returned to 
normal. This suggests that the absorption of CSF took place in the isolated ventricles. 
4 Clinically, patients with communicating and non-communicating hydrocephalus do 
not exhibit transmantle pressure gradients either. 69, 70 

Bulat, Orešković, Klarica, et al. did other experiments where they slowly infused cats’ 
lateral ventricles with 3H-water (Tritium). Since approximately 98.5 percent of CSF 
and IF bulk volume is water, the movement of water will determine most of CSF-IF 
physiologic activity. They realized that CSF does not flow along CSF spaces but is 
very rapidly reabsorbed into neighboring brain capillaries. During slow infusion (1.77 
µl/min) of 3H-water into cats’ lateral ventricles under normal CSF pressure, CSF 
concentrations in the cisterna magna and arterial plasma were identical. 2, 71 

Fenstermacher et al. showed that 3H-water passes across brain ependyma into 
caudate nucleus only a few mm, being rapidly eliminated into CNS capillaries (half 
life of 1.5 min). 72 Retrospectively, in the experiment creating an acute occlusion of a 
cat’s aqueduct of Sylvius, the fact that pressure is not modified in isolated ventricles 
supports the hypothesis that CSF is quickly reabsorbed transventricularly into 
periventricular capillaries. In contrast, distribution of substances with larger molecular 
weight into subarachnoid spaces has a completely different outcome. When a 
marked macromolecule such as 3H-inulin was injected into the CSF within the 
subarachnoid space, it was very slowly eliminated into the bloodstream and 
distributed multidirectionally because of its long elimination time from subarachnoidal 
spaces. Renkin and Crone observed the distribution of 3H-inulin from the CM to the 
cisterna basalis and lumbar cistern, over a 24-hour period. 54, 73 

These kinds of macromolecules have been used in the past to study CSF physiology, 
which brought numerous misconceptions about CSF circulation and reabsorption. In 
these earlier experiments, the injection of macromolecules into the ventricular spaces 
to define circulation of CSF gave the wrong impression that CSF is transported from 
lateral ventricles to 3rd and 4th ventricles and then into the cisterna magna and all the 
subarachnoid spaces. 20-22, 74 In contrast, injection of 3H-water in any part of the CSF 
system, can result in multidirectional water distribution including a “retrograde” path 
into the lateral ventricles 1. 

These results have been confirmed by Iliff, et al., who demonstrated that tracers 
injected in ventricular spaces or subarachnoid CSF of mice entered the parenchyma 
of the brain depending on their molecular size, 75 and get transported in a space 
between the brain capillaries and astrocyte’s feet the ‘glymphatic system’ 
(gliovascular clearance system). The CSF circulation appears across all blood 
vessels in and outside the brain within the CNS. 



 

Figure 3: Astrocytic endfeet: they cover approximately 99% of all cerebral capillaries. 

 

 
 
Figure 4: Cross section of a CNS capillary and its perivascular astrocytic endfeet. 



 
 

Figure 5: The Glymphatic System (Gliovascular Clearance System) in the CNS: draining 
from arteriole to venule. Adapted from Iliff, J.J., Wang M., Liao Y., Plogg B.A., Peng W., 
Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., Nagelhus E.A., 
Nedergaard M., 2012. A paravascular pathway facilitates CSF flow through the brain 
parenchyma and the clearance of interstitial solutes, including Amyloid β. Sci. Transl. Med. 4 
(147), 147ra111. (Fig. 5, page 7) 

 

• Cerebrospinal fluid absorption: traditional and non-traditional hypotheses 
 
- Choroid plexus absorption 

The Choroid Plexi may absorb about 1/10th of their own secretion. 76-82 For that 
reason, the function of these structures has been compared to the proximal renal 
tubule. 

- Arachnoid villi: the venous side 

In the 18th century Pacchioni described extrusions of the cranial arachnoid membrane 
that project into the venous sinuses of the dura mater called arachnoid villi. 
Arachnoid villi are microscopic while arachnoid granulations can be seen with the 
naked eye. In 1914, Weed showed in a crucial experiment that the arachnoid villi and 
granulations (AVG) are the major source of CSF absorption. 26 This hypothesis has 
become firmly established and most investigators still believe reabsorption of CSF is 
a passive process located mainly in the AVG. 83, 84 The exact means by which CSF 
transports through the AVG remains controversial, but numerous mechanisms have 
been suggested. The hypothesis of an open tubular system communicating directly 



or indirectly with the AVG has been refuted by Shabo and Maxwell, describing them 
as the results of histological preparation artefacts. 85 Other described mechanisms 
include transport via vacuoles, transcellular channels, endothelial cell gaps, and 
arachnoid cellular phagocytosis or pinocytosis. Recent research seems to show that 
the AVG, under physiologic conditions are not the locus of most CSF reabsorption, 
but accessory pathways at best, even though under conditions of elevated CSF 
pressure AVG may participate modestly in CSF reabsorption. 86 There are a few 
reasons against the idea that the AVG is a major source of CSF absorption. First of 
all venous sinuses do not exist in rats until 20 days after birth. The AVG do not 
appear to exist before birth in sheep as well as in humans. They begin to develop 
around the time of birth and increase in number with age. 87-90 Furthermore, it is 
imperative that a mechanism exists to clear CSF in gestation. Extracranial lymphatic 
vessels play an important role in CSF transport before birth and may represent a 
better pathway for CSF clearance in the neonate. 

 

Figure 6: Arachnoid Granulations: CSF Reabsorption, the traditional model. 

 

- The lymphatic side: "perineural pathways" 

To this day no lymphatics have been found in the brain parenchyma, but lymphatic 
vessels have been noted in the dura mater, the pia mater, the pituitary capsule, the 
orbit, the nasal mucosa, and the middle ear. 91 Some type of lymphatic-like drainage 
is necessary to evacuate the small amount of proteins of the central nervous system, 
which becomes particularly important in cases of edema, haemorrhage or infection. 
92, 93 The traditional hypothesis was updated by reviewing a large collection of 
evidence presenting the lymphatics as the primary site of CSF reabsorption in a 
previous publication. 90, 94 By injecting Berlin Blue dye into a dog’s subarachnoid 
space in 1869, Schwalbe made the first observation that the lymphatic pathways 
were the major means to absorb CSF. 80 Later, in 1872, Quincke theorized that the 
CSF can leave the subarachnoid space through small areas surrounding the nerve 
roots. 95 In 1875, Key and Retzius were the first to demonstrate the circulation 



through the arachnoid granulations into lymphatic vessels in the nasal mucosa, the 
frontal sinus and along cranial nerves using dye-colored gelatin. 96 More recently this 
CSF lymphatic absorption hypothesis has been reexamined. 88, 97-99 Boulton et al. 
demonstrated for example that 48 percent of the protein tracer injected in the lateral 
ventricles of sheep is transported into extracranial lymphatics. 100, 101 Brinker et al. 
also showed that at least 50 percent of CSF is reabsorbed through the lymphatics 
rather than arachnoid villi. 102 Increase in CSF intraventricular pressure will augment 
the amount of CSF drained by the lymphatics rather than the arachnoid villi. 93, 103-107 

 

Drainage through nasal lymphatics 

The historical experiment of Schwalbe using Berlin blue dye, as well as the work of 
Weed, showed some quantity of the marker passing along the olfactory bulb, 
olfactory nerve pathways to the nasal mucosa, the nasal lymphatics and then to the 
cervical lymphatics. 80, 108, 109 Numerous experiments with different species confirmed 
the existence of the same pathway. 49, 88, 97, 98, 104, 109-122 At relatively low intracranial 
pressures, carbon particles and labelled proteins follow the olfactory tracts and pass 
through the cribriform plate (lamina cribrosa) to the nasal mucosa, the 
retropharyngeal lymph nodes and to the nodes at the base of the neck. This pathway 
has been confirmed in humans, 59, 88, 118, 123 and nonhuman primates. 124-127 To 
demonstrate the importance of lymphatic drainage of CSF, Papaiconomou, et al. 
sealed the cribriform plate extracranially, which significantly impaired CSF transport. 
128 

 

Drainage through other perineural pathways 

Lymphatic drainage has been found in most cranial and spinal nerve pathways 
including optic nerve pathways 49, 106, 112, 121, 129, 130; auditory nerve pathways 131; 
trigeminal nerves, facial nerves and other cranial nerves 132; as well as lumbar spinal 
nerves 133, 134. 

 

Direct dural pathway 

Under high pathological pressure, the CSF can also escape from the arachnoid 
barrier and be reabsorbed by the lymphatics of the dura mater. 135 In addition, 
McComb et al. infused cats and rabbits with marked CSF under high pressure. He 
found the tracer in the olfactory bulbs, optic nerves, and deep cervical lymph nodes, 
but when it was infused at normal CSF pressure, the tracer was not shown in these 
structures. This suggests that the lymphatic pathway is a secondary path that can 
become more important under high CSF pressure. 106, 136 

 

- Transependymal exchange 

According to the classical model the secretion of CSF is mainly an active process in 
the choroid plexi. There is a filtration across the endothelial capillary wall a secretion 
through the choroidal epithelium. Since the second phase of CSF formation is an 



active process, the CSF formation rate should not be CSF pressure-dependant, it 
should not be significantly altered by moderate changes in intracranial pressure. 

This is contradictory to various studies showing that CSF secretion decreases as 
CSF pressure increases and vice-versa. 13, 19, 60, 61, 63, 65 

Orešković, et al. showed that at physiological pressure, CSF formation and 
absorption are in balance within the isolated brain ventricles. 19 This implies that the 
CSF is not only transported to the subarachnoid spaces to be reabsorbed mainly into 
the venous sinuses, but that it is also significantly absorbed inside the ventricles 
themselves. 1, 2, 19, 30, 56, 77-79, 82, 137, 138 

We previously noted that Bulat, Orešković, Klarica, et al. observed that CSF does not 
flow along CSF spaces but is rapidly reabsorbed transventricularly into periventricular 
brain capillaries. Under normal CSF pressure, 3H-water is reabsorbed into 
periventricular capillaries and is not delivered to subarachnoid spaces, suggesting 
that CSF bulk water is absorbed into brain ventricles. 2, 71, 139 Iliif also saw the CSF in 
the SAS getting reabsorbed by cerebral capillaries (paravascular spaces). 75 

There is no net CSF formation under normal conditions. It seems that CSF is 
produced and is reabsorbed everywhere in the CSF spaces. The volume of CSF 
depends on the hydrostatic gradients and osmotic forces present between the blood 
(capillaries) on one side and the interstitial fluid of brain parenchyma and the CSF on 
the other. 

 

Conclusion 

From more recent research, there is relatively little convincing, in vivo evidence to 
support the traditional model of the production, circulation, and reabsorption of CSF. 
The traditional model is seemingly based on faulty research and misinterpretations of 
that research, and this hypothesis is now increasingly being challenged. 

Evidence for the new model presented here is strong and is being more widely 
adopted by investigators around the world. 

The CSF is a filtrate and secretion, produced in active and passive processes. 

Interstitial fluid (IF) surrounding the subarachnoid space and CSF form a unit of 
function that is produced by hydrostatic and oncotic exchange across the endothelial 
walls of arterial capillaries in the CNS. 

Essentially, the volume of CSF depends on the hydrostatic pressure and osmotic 
force within the CNS between the capillaries on one side and the IF and CSF unit on 
the other. The future will tell us the exact percentage of choroid plexi/cerebral 
capillary CSF secretion and lymphatic/venous/CP/capillary endothelium CSF 
reabsorption. It seems these percentage are now shifting in favour of cerebral 
capillary endothelium. 

The consequences of this reformulation of CSF hydrodynamics will affect research 
and publications in physiology, medicine and surgery, especially related to the 
treatment of hydrocephalus and other neurological disorder. This model may also be 
of interest in the practice of osteopathy in the cranial field. 
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